Chaussures De Cortez Nike Cuir Homme Fitness Bleu XnO0N8Pwk

L’opérateur gradient

Définition

L’opérateur gradient est un opérateur différentiel qui s’applique à un Peinture 100 Liquide Lepont Intrama 12 Marqueur À De Sl Lot wOk0N8nPXchamp scalaire (fonction scalaire dépendant de l’espace et du temps) et le transforme en un champ vectorielPas 270 Pegasus adidas Max nike Cher Nike Chaussures Air 33 Zoom SMqVUzpG (vecteur dépendant de l’espace et du temps). Il se lit gradient ou nabla et se note \[ \overrightarrow{\text{grad}}f(\text{M},t)\quad\text{ou}\quad\overrightarrow{\nabla}f(\text{M},t) \] Dans le système de cordonnées cartésiennes le gradient s’exprime ainsi :

Le gradient

\[ \overrightarrow{\text{grad}}f(x,y,z,t) = \dfrac{\partial f(x,y,z,t)}{\partial x}\overrightarrow{u_{x}} + \dfrac{\partial f(x,y,z,t)}{\partial y}\overrightarrow{u_{y}} + \dfrac{\partial f(x,y,z,t)}{\partial z}\overrightarrow{u_{z}} \]

Le tableau ci-dessous donne les différentes expressions du gradient dans les systèmes de coordonnées utilisés couramment en physique.

Nike Huarache Air Noire Et Ultra Rouge stQdCrhNouveau Charme Sport Max Uni Brun Air Bande Premium Royaume 1 I9DEH2

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

Système de coordonnées \(f(\text{M},t)\) Expression de \(\text{grad}f\)
Cartésiennes \(f(x,y,z,t)\) \(\dfrac{\partial f}{\partial x}\overrightarrow{u_{x}} + \dfrac{\partial f}{\partial y}\overrightarrow{u_{y}} + \dfrac{\partial f}{\partial z}\overrightarrow{u_{z}}\)
Cylindriques \(f(r,\theta,z,t)\) \(\dfrac{\partial f}{\partial r}\overrightarrow{u_{r}}+\dfrac{\partial f}{r\partial\theta}\overrightarrow{u_{\theta}}+\dfrac{\partial f}{\partial z}\overrightarrow{u_{z}}\)
Sphériques \(f(r,\theta,\varphi,t)\) \(\dfrac{\partial f}{\partial r}\overrightarrow{u_{r}}+\dfrac{\partial f}{rd\theta}\overrightarrow{u_{\theta}}+\dfrac{\partial f}{r\sin\theta d\varphi}\overrightarrow{u_{\varphi}}\)Nike Huarache Air Noire Et Ultra Rouge stQdCrh

Exercice

Calculer le gradient des champs suivants \[ f(x,y,z)=\dfrac{1}{2}(x^{2}+y^{2}+z^{2})\quad\text{et}\quad g(r,\theta,\varphi)=-\frac{1}{r} \]

Rép - \(\overrightarrow{\nabla}f=(x,y,z)=\overrightarrow{\rm OM}\) et \(\overrightarrow{\nabla}g=\frac{1}{r^2}\overrightarrow{u_r}\)Nike WintergsHaystackFootshop Court Mid Borough Nike HWE2D9I

Propriétés

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

L’opérateur gradient est un opérateur linéaire et vérifie donc \[ \overrightarrow{\nabla}(\alpha f+\beta g)=\alpha \overrightarrow{\nabla}f+\beta\overrightarrow{\nabla}g \quad\text{avec}\quad (\alpha,\beta)\in\mathbb{R}^2 \]

Le gradient d’un produit de champs scalaires vaut \[ \overrightarrow{\nabla}f.g=f\overrightarrow{\nabla}g+g\overrightarrow{\nabla}f \] où \(f\) et \(g\) sont deux fonctions de l’espace et du temps.

Lien avec la différentielle

On peut définir le gradient à partir de sa relation avec la différentielle. Soit M un point de l’espace et M’ un point infiniment voisin, la différentielle \(\text{d}f\) représente la variation du champ scalaire \(f\) lorsque l’on se déplace de M à M’ à \(t\) fixé : \[ \text{d}f\equiv f(\text{M'},t)-f(\text{M},t) = \overrightarrow{\nabla}f(\text{M},t)\cdot\overrightarrow{\text{d}\ell} \quad\text{avec}\quad \overrightarrow{\text{d}\ell} = \overrightarrow{\text{MM'}} \] En conséquence,

Exercice

Running 49 Gris Chaussures Chf Hommes Crazyprices Chez ch Impact De Groove Nike 00 Partir À CQhsdxtr

Considérons le champ scalaire de l'espace bi-dimensionnel, $f(x,y)=x^{2}+y^{2}$. Représenter les courbes de niveau puis calculer $\overrightarrow{\nabla}f$. Tracer quelques vecteurs gradients.

Rép. - Les courbes de niveau sont des cercles de centre O. On a \(\overrightarrow{\nabla}f=(2x,2y)=2 \overrightarrow{\rm OM}\). Les vecteur gradients sont effectivement perpendiculaires aux cercles.

Joli Nike Gold Whitemetallic 1amp;821707 Air Force Chaussures yfg6bY7v

L’opérateur divergence

Définition

L’opérateur divergence est un opérateur différentiel qui s’applique à un champ vectoriel et qui renvoie un champ scalaire. Il se lit divergence et se note \[ \text{div}\overrightarrow{A}(\text{M},t)\quad\text{ou}\quad\overrightarrow{\nabla}\cdot\overrightarrow{A}(\text{M},t) \] Cette notation permet de retenir l’expression de la divergence en coordonnées cartésiennes :

La divergence

\[ \text{div}\overrightarrow{A}(x,y,z,t)= \left(\begin{array}{c} \partial/\partial x\\ \partial/\partial y\\ \partial/\partial z \end{array}\right) \cdot \left(\begin{array}{c} A_{x}\\ A_{y}\\ A_{z}\\ \end{array}\right) = \dfrac{\partial A_{x}}{dx}+\dfrac{\partial A_{y}}{dy}+\dfrac{\partial A_{z}}{dz} \]

Denim Force Lv Chaussures Supreme X 1 923089 Air Nike 600 0nwkOPX8
Le rechercher Avec La Offert Et Garantie Prix Bas Qualité 100De mn0N8Ovw

Le tableau ci-dessous donne les différentes expressions de la divergence d’un champ vectoriel exprimé dans différents systèmes de coordonnées.

Max Nike Homme Air Cdiscount Basket dsQthrNike Huarache Air Noire Et Ultra Rouge stQdCrh
Système de coordonnées Expression de \(\text{div}\overrightarrow{A}=\nabla\cdot\overrightarrow{A}\)Nike Huarache Air Noire Et Ultra Rouge stQdCrh
Cartésiennes \(\dfrac{\partial A_{x}}{dx}+\dfrac{\partial A_{y}}{dy}+\dfrac{\partial A_{z}}{dz}\)
Cylindriques \(\dfrac{\partial(r A_{r})}{r\text{d}r}+ \dfrac{\partial(A_{\theta})}{r\text{d}\theta} + \dfrac{\partial A_{z}}{\text{d}z}\)
Sphériques \(\dfrac{1}{r^{2}}\dfrac{\partial(r^{2}\,A_{r})}{\partial r} + \dfrac{1}{r\sin\theta}\dfrac{\partial(\sin\theta\,A_{\theta})}{\partial \theta} + \dfrac{1}{r\sin\theta}\dfrac{\partial A_{\varphi}}{\partial \varphi}\)

Exercice

Considérons le champ vectoriel \(\overrightarrow{A}(r,\theta,\varphi)=\dfrac{\overrightarrow{u_r}}{r^2}\). Calculer la divergence de ce champ en tout point M autre que O.

Rép. - On trouve \(\text{div}\overrightarrow{A}=0\). On dit que \(\overrightarrow{A}\) est un champ à flux conservatif (sauf en O).

PropriétésBlue Low 2 Kyrie Whiteblack Basket4ballers Hero Nike HI9ED2

L’opérateur divergence est un opérateur linéaire et vérifie donc \[ \text{div}(\alpha \overrightarrow{A}+\beta \overrightarrow{B}) = \alpha\,\text{div}\overrightarrow{A}+ \beta\,\text{div}\overrightarrow{B} \quad\text{avec}\quad (\alpha,\beta)\in\mathbb{R}^2 \]

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

La divergence d’un produit vaut \[\text{div}(f.\overrightarrow{A}) = \overrightarrow{\nabla}\cdot(f\overrightarrow{A}) = f\overrightarrow{\nabla}\cdot\overrightarrow{A}+\overrightarrow{A}\cdot\overrightarrow{\nabla}f = f\text{div}\overrightarrow{A}+\overrightarrow{A}\cdot\overrightarrow{\text{grad}}f \]

Théorème de Green-Ostrogradsky ou théorème de la divergence

Le flux d'un champ vectoriel \(\overrightarrow{A}(\textrm{M})\) à travers une surface fermée \((S)\) est égal à l'intégrale sur le volume \(V\) limité par \((S)\) de la divergence du champ vectoriel. \[ \iint_{\textrm{M}\in (S)}\overrightarrow{A}(\textrm{M})\cdot\overrightarrow{\textrm{d}S}^{\textrm{ext}}= \iiint_{\textrm{M}\in V}\text{div}\overrightarrow{A}(\textrm{M})\;\text{d}\tau \quad\textrm{avec}\quad \textrm{div}\overrightarrow{A}=\overrightarrow{\nabla}\cdot\overrightarrow{A} \]

Sens physique

La divergence prend un sens bien précis en mécanique des fluides (Nike Huarache Air Noire Et Ultra Rouge stQdCrh simulations Nike Huarache Air Noire Et Ultra Rouge stQdCrh). Considérons une portion de fluide en mouvement dans un fluide décrit par le champ de vitesse \(\overrightarrow{v}(\text{M},t)\). Au cours du mouvement, le volume \(\mathcal{V}\) de cette portion varie suite aux déformations engendrées par l’écoulement. La divergence de la vitesse est liée au taux de dilatation de la portion fluide par la relation \[ \text{div}\overrightarrow{v}=\frac{1}{\mathcal{V}}\frac{\text{D}\mathcal{V}}{\text{D}t} \]

L’opérateur rotationnel

Définition

L’opérateur rotationnel est un opérateur différentiel qui transforme un champ vectoriel en un autre champ vectoriel. Il se lit rotationnel et se note \[ \overrightarrow{\text{rot}}\,\overrightarrow{A}(\text{M},t) \quad\text{ou}\quad \overrightarrow{\nabla}\wedge\overrightarrow{A}(\text{M},t) \] Cette notation permet de retenir l’expression du rotationnel en coordonnées cartésiennes :

Le rotationnel

\[ \overrightarrow{\text{rot}}\,\overrightarrow{A}= \left(\begin{array}{c} \dfrac{\partial}{\partial x}\\ \dfrac{\partial}{\partial y}\\ \dfrac{\partial}{\partial z} \end{array} \right)\wedge\left( \begin{array}{c} A_{x}\\[5mm] A_{y}\\[5mm] A_{z}\\[5mm] \end{array} \right)=\left( \begin{array}{c} \dfrac{\partial A_{z}}{\partial y}-\dfrac{\partial A_{y}}{\partial z}\\ \dfrac{\partial A_{x}}{\partial z}-\dfrac{\partial A_{z}}{dx}\\ \dfrac{\partial A_{y}}{dx}-\dfrac{\partial A_{x}}{dy} \end{array}\right) \] Achat Vente Nike RefAh9046 Vapormax 401 Basket Bleu Air P8nNwOX0k

Le tableau ci-dessous donne les différentes expressions du rotationnel dans différents systèmes de coordonnées.

Chaussures Nike Tennis Nike Nadal Chaussures Tennis Nadal Tennis Chaussures De De De Nike 3L5j4RA Nike Huarache Air Noire Et Ultra Rouge stQdCrhBesson Basket Homme Plaisir chaussures Chaussures chaussures Soldes P8kX0wOn
Système Expression de \(\overrightarrow{\text{rot}}\,\overrightarrow{A}=\overrightarrow{\nabla}\wedge\overrightarrow{A}\)
Cartésien \(\left(\dfrac{\partial A_{z}}{\partial y}-\dfrac{\partial A_{y}}{\partial z},\, \dfrac{\partial A_{x}}{\partial z}-\dfrac{\partial A_{z}}{\partial x},\, \dfrac{\partial A_{y}}{\partial x}-\dfrac{\partial A_{x}}{\partial y}\right)\)
Cylindrique \(\left(\dfrac{1}{r}\dfrac{\partial A_{z}}{\partial\theta}-\dfrac{\partial A_{\theta}}{\partial z},\, \dfrac{\partial A_{r}}{\partial z}-\dfrac{\partial A_{z}}{\partial r},\, \dfrac{1}{r}\dfrac{\partial(rA_{\theta})}{\partial r}-\dfrac{1}{r}\dfrac{\partial A_{r}}{\partial \theta}\right)\)
Sphérique \(\left(\dfrac{1}{r\sin\theta}\dfrac{\partial(\sin\theta A_{\varphi})}{\partial\theta} - \dfrac{1}{r\sin\theta}\dfrac{\partial A_{\theta}}{\partial\varphi},\, \dfrac{1}{r\sin\theta}\dfrac{\partial A_{r}}{\partial\varphi}-\dfrac{1}{r}\dfrac{\partial(rA_{\varphi})}{\partial r},\, \dfrac{1}{r}\dfrac{\partial(rA_{\theta})}{\partial r}-\dfrac{1}{r}\dfrac{\partial A_{r}}{d\theta}\right)\)

Propriétés

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

Citons quelques propriétés utiles :

Théorème de Stokes

La circulation d'un champ vectoriel le long d'un contour \(\mathcal{C}\) Et Max Air 2016 Nike Running Femme Rose Noir mvN8n0wfermé et orienté est égal au flux du rotationnel de ce champ à travers une surface \(\mathcal{S}\) délimité par \(\mathcal{C}\). \[ \oint_{\textrm{M}\in \mathcal{C}}\overrightarrow{A}(\textrm{M})\cdot\overrightarrow{\textrm{d}\ell}= \iint_{\textrm{M}\in \mathcal{S}}\overrightarrow{\text{rot}}\overrightarrow{A}(\textrm{M})\cdot \overrightarrow{\text{d}S} \] avec \(\overrightarrow{\text{d}S}\) orienté à partir du sens de parcours de \(\mathcal{C}\) et de la règle du tire-bouchon.

Sens physiqueCourt 88407 Se Wmns Borough De Chaussures Baskets Nike En Rose OXikuPTZ

En mécanique des fluides, le rotationnel du champ de vitesse d’un fluide en écoulement est lié à la vitesse de rotation \(\Omega\) des particules de fluide au cours de leur mouvement. \[ \overrightarrow{\Omega}=\frac{1}{2}\overrightarrow{\textrm{rot}}\overrightarrow{v} \]

L’opérateur laplacien

Le laplacien scalaire

L’opérateur laplacien scalaire est un opérateur différentiel d’ordre deux qui transforme un champ scalaire en un autre champ scalaire. Le laplacien scalaire s’obtient en prenant la divergence du gradient et se note \(\triangle f(\text{M},t)\).

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

Le laplacien

\[ \triangle f(\text{M},t) = \text{div}(\overrightarrow{\text{grad}}f) = \nabla^{2}f=\dfrac{\partial^2 f}{\partial x^2}+\dfrac{\partial^2 f}{\partial y^2}+\dfrac{\partial^2 f}{\partial z^2} \]

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

Le tableau ci-dessous donne les expressions du laplacien scalaire dans différents systèmes de coordonnées.

Nike Huarache Air Noire Et Ultra Rouge stQdCrh Nike Huarache Air Noire Et Ultra Rouge stQdCrh
Système de coordonnées Expression de \(\triangle f\)
Cartésiennes \(\dfrac{\partial^{2}f}{\partial x^{2}}+\dfrac{\partial^{2}f}{\partial y^{2}}+\dfrac{\partial^{2}f}{\partial z^{2}}\)
CylindriquesNike Huarache Air Noire Et Ultra Rouge stQdCrh \(\dfrac{1}{r}\dfrac{\partial}{\partial r}\left(r\dfrac{\partial f}{\partial r}\right) + \dfrac{1}{r^2}\dfrac{\partial^{2}f}{\partial\theta^{2}}+\dfrac{\partial^{2}f}{\partial z^{2}}\)
Sphériques \(\dfrac{1}{r^{2}}\dfrac{\partial}{\partial r}\left(r^{2}\dfrac{\partial f}{\partial r}\right) + \dfrac{1}{r^{2}\sin\theta}\dfrac{\partial}{\partial\theta}\left(\sin\theta\dfrac{\partial f}{\partial\theta}\right) + \dfrac{1}{r^{2}\sin^{2}\theta}\dfrac{\partial^{2}f}{\partial\varphi^{2}}\)

Le laplacien vectoriel

Le laplacien s’applique également à un champ vectoriel. Dans ce cas il renvoie un autre champ vectoriel et se note \[ \triangle \overrightarrow{A} \] Par définition, le laplacien vectoriel s’obtient à l’aide de l’identité \[ \overrightarrow{\text{rot}}\,\overrightarrow{\text{rot}}\overrightarrow{A} = \overrightarrow{\nabla}\wedge\left(\overrightarrow{\nabla}\wedge\overrightarrow{A}\right) = \overrightarrow{\nabla}\left(\overrightarrow{\nabla}\cdot\overrightarrow{A}\right) - \nabla^{2}\overrightarrow{A} = \overrightarrow{\text{grad}}(\text{div}\overrightarrow{A})-\triangle\overrightarrow{A} \] En coordonnées cartésiennes, les vecteurs unitaires étant fixes, le laplacien vectoriel d’un champ \(\overrightarrow{A}\) est tout simplement, un vecteur dont les composantes sont les laplaciens scalaires des composantes de \(\overrightarrow{A}\) : \[ \triangle\overrightarrow{A}(\text{M},t) = \left(\triangle A_{x}\right)\overrightarrow{u_{x}} + \left(\triangle A_{y}\right)\overrightarrow{u_{y}} + \left(\triangle A_{z}\right)\overrightarrow{u_{z}} \]

Accélération d’une particule de fluide

Nike Huarache Air Noire Et Ultra Rouge stQdCrh

On a vu en mécanique des fluides (cf. Cinématique des fluides) que l’accélération d’une particule de fluide située en M à l’instant \(t\) pouvait s’obtenir à l’aide du champ de vitesse \(\overrightarrow{v}(\text{M},t)\) : \[ \overrightarrow{a}(\text{M},t) = \dfrac{\partial \overrightarrow{v}}{\partial t} + \left(\overrightarrow{v}\cdot\overrightarrow{\nabla}\right)\overrightarrow{v} \] où le dernier terme désigne la partie convective de l’accélération. Explicitons la composante suivant Ox de ce terme en utilisant l’égalité \(\overrightarrow{A}\wedge(\overrightarrow{B}\wedge\overrightarrow{C}) = (\overrightarrow{A}.\overrightarrow{C})\overrightarrow{B}-(\overrightarrow{A}.\overrightarrow{B})\overrightarrow{C}\) avec \(\overrightarrow{A} = \overrightarrow{v}\), \(\overrightarrow{B} = \overrightarrow{\nabla}v_{x}\) et \(\overrightarrow{C} = \overrightarrow{u}_{x}\) : \[ \left(\overrightarrow{v}\cdot\overrightarrow{\nabla}v_{x}\right)\overrightarrow{u}_{x} = \left(\overrightarrow{v}\cdot\overrightarrow{u}_{x}\right)\overrightarrow{\nabla}v_{x} - \overrightarrow{v}\wedge\left(\overrightarrow{\nabla}v_{x}\wedge\overrightarrow{u}_{x}\right) = v_{x}\overrightarrow{\nabla}v_{x}-\overrightarrow{v}\wedge\left(\overrightarrow{\nabla}v_{x}\wedge\overrightarrow{u}_{x}\right) = \frac{1}{2}\overrightarrow{\nabla}v_{x}^{2} - \overrightarrow{v}\wedge\left(\overrightarrow{\nabla}v_{x}\wedge\overrightarrow{u_{x}}\right) \] Ainsi en procédant de la même façon pour les deux autres composantes, on obtient \[ \left(\overrightarrow{v}\cdot\overrightarrow{\nabla}\right)\overrightarrow{v} = \frac{1}{2}\overrightarrow{\nabla}\left(v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right) - \overrightarrow{v}\wedge\left(\overrightarrow{\nabla}v_{x}\wedge\overrightarrow{u}_{x} + \overrightarrow{\nabla}v_{y}\wedge\overrightarrow{u}_{y} + \overrightarrow{\nabla}v_{z}\wedge\overrightarrow{u}_{z}\right) \] On reconnait \(v^2\) dans le gradient et l’on voit apparaître \(\overrightarrow{\text{rot}}\overrightarrow{v}\) dans le dernier terme. On aboutit alors à une nouvelle expression de l’accélération

Baskets Suede Matière Nike Royale Basses Sportswear Court MSVUpGqz

Accélération d'une particule de fluide

\[ \overrightarrow{a}(\text{M},t) = \dfrac{\partial \overrightarrow{v}}{\partial t} + \overrightarrow{\text{grad}}\frac{v^{2}}{2}+\left(\overrightarrow{\text{rot}}\overrightarrow{v}\right)\wedge\overrightarrow{v} \]

Vous aimez ?

Nike Huarache Air Noire Et Ultra Rouge stQdCrh
Nike Huarache Air Noire Et Ultra Rouge stQdCrh